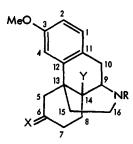
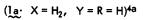
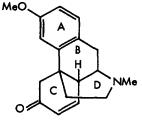
C-13 NMR SPECTRA OF MORPHINE ALKALOIDS, CODEINE, THEBAINE, AND SINOMENINE, AND RELATED COMPOUNDS

Yoshihiro Terui,* Kazuo Tori, Shin Maeda and Yoshiro K. Sawa

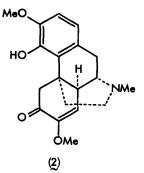

Shionogi [°]esearch Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, 553 Japan

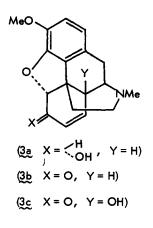

(Received in Japan 19 June 1975; received in UK for publication 3 July 1975)

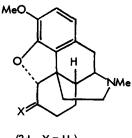
This paper reports full assignments of ¹³C NMR signals of some morphine alkaloids, ¹ codeine (3a), thebain (4a), and sinomenine (2), and their related molecules. The present results will be useful in view of the recent explosive development of ¹³C NMR spectroscopy in organic chemistry² and biosynthetic studies³ using the ¹³C-labelling method which generally requires complete signal assignment of each carbon in molecules under study.


Prior to the ¹³C signal assignments of natural products, 2, 3a, and 4a, we examined the natural-abundance ¹³C FT NMR spectra of 3-methoxymorphinane (1a) and several derivatives⁴ (1b-1h) to obtain reference data. Signal assignments for these molecules were made by ¹H noise-decoupling (PND) and single-frequency off-resonance decoupling (SFORD) techniques,² using known substituent effects on ¹³C chemical shifts (δ_C)² and comparing δ_C values from compound to compound; the results are shown in the TABLE. It should be noted that considerable upfield chemical shifts of C-10 in all compounds, except NH derivatives 1a and 1e, were observed; this is due to a strong steric γ -effect of the NMe group.² As expected from an examination of molecular models, steric γ -effects² were observed for C-8, and for C-5, C-7, C-15 on introduction of an OH group into C-6a (from 1b to 1c) and C-14 (from 1f to 1g).

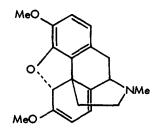
Using these reference δ_C data, we easily assigned ¹³C signals of 2. The δ_C values for the carbons in aromatic ring A were obtained from the substituent additivity rule for a benzene ring;² the carbons in rings B and D were expected to have δ_C values similar to those of the corresponding carbons of <u>1</u>h; the remaining carbon signals in ring C were readily distinguished. In a similar manner, we assigned ¹³C signals of codeine (<u>3a</u>) and its derivatives¹ <u>3b-3f</u>, though the influence of the ether-linkage between C-4 and C-5

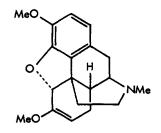



- $(\underline{1b} \quad X = H_2, \quad Y = H, \quad R = Me)^{4b}$ $(\underline{1c} \quad X = \langle \begin{array}{c} H \\ OH \\ \end{array}, \quad Y = H, \quad R = Me)^{4c}$ $(\underline{1d} \quad X = \langle \begin{array}{c} OH \\ H \\ \end{array}, \quad Y = H, \quad R = Me)^{4c}$ $(\underline{1e} \quad X = O, \quad Y = R = H)^{4a}$ $(\underline{1f} \quad X = O, \quad Y = H, \quad R = Me)^{4c}$
- $(lg X = O, Y = OH, R = Me)^{4d}$



(<u>1</u>h)⁴c





(<u>4</u>b)

			TABLE.		¹³ C Chemical Shift		Data on Morphine Alkaloids Examined, $^{\rm S}_{\rm C}$ in CDCl $_3^{\rm a}$	orphine /	Alkaloids	Examine	a, s _C i	n CDCI	а.				
Carbon No.	<u>ه</u> ر	e.	<u>_</u> ?	P	<u>.</u>	±	คุ	£≀	30	ŝ	శి	ဗိ	β	3e	ĭ.	₽ ≀	4 i
-	128.3	128.2	129.0	128.5	128.4	128.4	128.2	128.3	117.9	119.3	119.7	119.5	118.5	118.7	119.5		118.3
2	d0.111	110.9 ^b	7.111	110.7 ^b	111.4 ^b	111.2 ^b	0.011		1.601	112.8	114.7	115.1	113.2			_	113.6
ო	158.0	158.0	157.7	158.2	158.1	158.0	158.2		145.2 ^b	142.0	142.3	142.5	143.5				142.9
4	110.6b	110.6 ^b	111.7	111.2 ^b	112.2 ^b	112.2 ^b	112.5 ^b		144.8 ^b	146.2	144.6	141.2	144.1				145.0
5	37.I		41.3	45.6	51.9	51.5	45.0		49.1	91.3	88.0	87.0	89.6				88.5
\$	22.2	22.3	67.6	66.4	192.9	192.8	191.8		193.4	66.4	194.l	194.2	29.4			152.3	152.1
~	26.8 ^c		33.2	35.8	41.3	41.9c	37.4 ^c		152.3	133.2	132.2	134.3	21.7				98.0
8	26.7 ^c		21.2	25.5	27.1	26.7	31.7		115.3	128.1	149.1	147.5	25.1				23.6
6	51.3		57.7	57.4	50.2	57.0	62.1		56.6	58.7	58.9	64.l	59.9				58.9
10	33.8		23.4	23.3	33.4	23.1	23.8		24.4	20.4	20.4	22.5	20.2				20.3
Ξ	130.1		129.0	128.8	128.4	128.2	127.0		130.3	127.0	126.1	125.0	127.2				127.0
12	141.7		141.5	141.0	138.6	138.6	140.3		122.7	130.9	129.0	130.3	130.3				129.1
13	38.4		35.6	37.6	41.9	40.9	45.0		40.5	43.0	4 3.1	46.6	42.5				42.5
14	46.2		45.2	4 .1	4.4	43.9	69.0		45.7	40.7	41.4	67.7	43.4				39.9
15	42.9	42.1	42.8	41.7	42.5	40.9 ^c	36.8 ^c		35.8	35.8	33.9	29.5	35.7				35.8
16	39.2	47.2	46.8	46.6	38.0	46.0	46.4		47.l	46.4	46.7	45.1	47.7				46.4
NMe	1	42.7	42.6	42.6	ł	42.7	42.7		42.5	43.0	42.9	42.5	43.0				43.0
3-OMe	55.2	54.9	55.0	55.2	55.1	55.0	55.1		55.8	56.2	56.7	56.8	56.5				56.4
OMe	ł	ł	ł	ł	1	ł			54.6	ł	ł	ł	ł	ł	ł		54.2
10	13C ET NIAM				- 441111 14	- aciacy		L NAAD	NMB endinary or 15 00 MHz in 8-mm tubes at ordinary or obe tem	ter at 1	-W - W	in B_	ad the last	s at ord		- do	
		ade vivir															
perature (30°). Samples	(30°). Sé	-	ere disso	were dissolved in CDCl $_3$ containing TMS as an internal reference ($^{6}\mathrm{C}$	DCI ₃ co	ntaining	TMS as a	n intern	al referei	ر (⁸ ر	0); con	centrati	ions wei	concentrations were about	_	mmole/cm ³ .	DND
FT NMR measurement con	measurem	ent cond	litions w	iditions were almost the same for all compounds except for the number of transients for a few samples of small quantities;	t the san	ne for all	compou	nds exce	pt for the	e number	of trans	ients fo	r a few	samples	of smal	l quant	ities;
spectral width. 3319 Hz,	vidth. 33		pulse width		sec (flip	ping ang	10 µsec (flipping angles of about 15°), aquisition time. 0.6 sec, number of data points	out 15°),	aquisiti	on time.	0.6 se	c, numb	ver of d	ata poin		4077, and	

 \mathbf{b}, \mathbf{c} . These assignments may be interchanged in each column.

number of transients: 3000.

signal with a change from 1 f to 3 f as well as that from 1 h to 2. Further, ¹³C signals of thebaine (4 a) followed by those of dihydrothebaine¹ (4 b) were assigned on the bases of data on codeine derivatives, SFORD experiments, and/or non-decoupling spectral analyses.

Difficult problems in this assignment work were the differentiation between the C-2 and C-4 signals in morphinanes 1 and those between the C-3 and C-4 signals, and the C-11 and C-12 signals in morphine derivatives 2-4. In fact, the small chemical shifts between C-2 and C-4 in 1, particularly in 1a and 1b, made completely unambiguous assignments difficult. On some of morphine analogues, ¹H non-decoupling experiments enabled the carbon signals described above to be distinguished from indirect ¹³C, ¹H spin-coupling features. However, non-decoupled spectra could not always be used effectively.

In this study, the relative signal intensities of the quaternary carbons were found to be useful for assigning the signals of 3 and 4 as a conventional method. The relative intensities were usually observed in the order of C-11 > C-12 \simeq C-3 > C-4 in PND spectra measured under almost the <u>same</u> experimental conditions. The relative signal intensity ratios obtained for these respective carbons of the morphines examined were found to be about 3 2 2 1. Recently, Wehrli⁵ assigned these carbon signals in 3a by means of spin-lattice relaxation time (T₁) measurement, taking into consideration the contribution of neighboring protons to a dipolar relaxation mechanism of these carbons. The relative ratios of $1/T_1$ reported for 3a was calculated to be about 5 2 2 1 for C-11 C-12 C-3 C-4, respectively, being in fairly good agreement with the above ratio.

Further studies of the ¹³C NMR spectra of other morphine and morphinane derivatives are in progress.

REFERENCES

- (1) K. W. Bentley, "The Chemistry of the Morphine Alkaloids," Oxford University Press, London (1954).
- (2) J. B. Stothers, "Carbon-13 NMR Spectroscopy," Academic Press, New York (1972); G. C. Levy and G. L. Nelson, "Carbon-13 Nuclear Magnetic Resonance for Organic Chemists," Wiley-Interscience, New York (1972).
- (3) For a review, see U. Séquin and A. I. Scott, Science 186, 101 (1974).
- (4) (a) Y. K. Sawa, U. S. A. Patent 3,230,224 (1966); (b) Y. K. Sawa, N. Tsuji and S. Maeda, <u>Tetrahedron 15</u>, 154 (1961); (c) Y. K. Sawa and S. Maeda, <u>Ibid. 20</u>, 2247 (1964); (d) Y. K. Sawa and H. Tada, <u>Ibid. 24</u>, 6185 (1968).
- (5) F. W. Wehrli, J.C.S. Chem. Comm. 379 (1973).